Measuring Application Development
Productivity
by Allan J. Albrecht

IBM Corporation
Whils Plains, New York

In this paper | would like to share with you some
experiences in measuring application development
project productivity in 1BM’s DP Services orgeniza-
tion. | have several objectives in this paper:

¢ to describe our productivity measure, which has
been effective in measuring productivity over all
phases of a project including the design phase, and
has enabled us to compare the results of projects
that use different programming languages and
technologies.

< to show how we used that measure to determine
the productivity trend in our organization.

» to identify some factors that affected productivity
and to show how we determined their relative

importance.

At this point | shall describe the organization so you
can consider the subject in the context of our man-
agement objectives.

The DP Services organization consists of about 450
people engaged in application development for
1BM’s customers under contract, Both customers and
Services people are located throughout the United
States. At any glven time there are about 150-170
contracts under way. Projects cover all industries.
They address the spectrum of data processing func-
tional requirements: order entry and control, insur-
ance claim processing, hospital patient information
systems, data communication control systems, etc.
The average contract size is 2 or 3 people. A number
of projects each year require 15 to 20 people, and
several require up to 35 or 40 Services people and
customer people, working under our project man-
ager, to develop the application.

Each project is done under the DP Services Applica-
tion Development Process (Figure 1). Let me not give
the impression that on each of these hundreds of
contracts we perform complete projects. On the
majority of the contracts we perform only specific
tasks covering part of the function provided by the
project. Our approach is a phased approach to de-
veloping applications. The phased approach consists
of a system design followed by the system implemen-
tation phase. System design Is completed and ap-
proved before system implementation Is committed
and started. This graphic represents the distribution
of development effort in those phases. It is based on
DP Services experience on projects over the last

3 or 4 years.

o/20 |77

‘ : il

' “9 7<? aﬁ

%WT

Deces . E@M&Q‘@Q@

Q_//
Our experience shows that the design phase takes
about 20% of the work-hours and the implementation
phase takes about 80% of the work-hours ona com-
pleted project. This distribution has been quite con-
sistent. Our latest projects show the same distribution
of work effort as our earliest.

Later | will show you a model of the percentage of
effort for each task on this graph. | will also show that
we had a significant increase in project productivity
during that time. Since the shape of the distribution
did not change, the conclusion is that we have besn
increasing the productivity of the system design
phase at the same rate as the implementation phase.

The following disciplined management techniques
have helped achieve that productivity improvement.

Before the design project begins we make sure that
the project objectives are completely described and
approved, including functions to be provided, a state-
ment of work to be accomplished, and estimated
schedule and cost of the project.

The system design phase starts with requirements
definition, where business requirements are defined
for the customer's approval. During external and
internal system design we provide the customer with
a deslgn of the system they will be getting if they
approve. We provide a blueprint and a praposal for
further development and implementation. System °
implementation follows with program development
ending with a customer-approved system test and
demonstration.

That is the phased approach. Each project goes
through those basic phases.

To perform each project we use a project m;énage-
ment system (Figure 2). Figure 2 shows the funda-
mental processes of our project management system.

After the need is identified with the customer, project
objectives are completely documented. Using pro-
ductivity feedback from previous jobs, and a com-
plete task schedule of the project to be done, we
estimate the project. Then we go through the first of
the feedback loops where we assess the project risk,
with a 28-question structured questionnaire. We have
an independent systems assurance group review the
entire project objectives document to make sure it is
accurate, it is not misleading, and it contains all
information that must be agreed upon. After we and
the customer agree cn their objectives, and that we
pian to deliver these objectives, we start the project.,

The project is then plannad in delail. We ask that the
project have an average task size of 20-40 work
hours. We track the results against the planonce a
week, and report the project status to IBM manage-
ment and to the customer. We continue project re-
views by having the systems assurance group review
the project about every six months. Above all we
control change—not to prevent change, but to make
sure each party understands the value and cost, and
approves the change, before it is implemented.

A key element of the project management system is,
as we complete larger projects over 1000 work-hours,
we document the completed project. How many
hours were spent on the various tasks? What was
delivered? What were the helpful actions or detri-
mental events? Under what system and environment
did development take place? This document is then
analyzed along with other project completion reports
to updale the standards we use to guide future proj-
ects. We measure application development produc-
tivity via the feedback loop at the top of Figure 2, the
documented completed project results.

Now that | have discussed our Application Develop-
ment Process, how do we measure the success of an
application development project? There are three
basic criteria: projects should be finished on time,
within budget, and satisfy the customer. The cus-
tomer should have stipulated the desired functional
objectives and benefit/cost objectives at the cutset;
and if the project met those objectives within the
schedule and budget, the customer should be
satisfied.

Why measure productivity at all? To answer some
questions for management and our customers. Are
we doing as well as we can? Are we competitive?
Are we improving? Productivity measurement is
meant to provide some answers. Productivity mea-
surement helps identify and specifically promote
those things that improve productivity while avoiding
things that hurt productivity. We must continue to
identify and select davelopment systems and tech-
nologies that deliver more application function with
less effort and at lower cost.

We have learned there are things to watch out for in
measuring productivity. To start with, you must mea-
sure the whole process, including the design phase.
Costs can be Incurred in the system design phase as
well. Next, there are tasks and functions such as
project management and system architecture that
must be included because they contribute signifi-
cantly to productivity results. To ignare them gives a
false picture of the true costs. Finally, all measures
are relative. You can measure contemporary projects
against one another and you can measure time trends
within your organization, but comparisons between
organizations must be handled carefully unless they
are using the same definitions.

Productivity measurement can do harnt. To avaid
this, keep the major project objectives in perspec-
tive—on time, within budget, a satisfied customer.
Don't permit productivity measurements to divert
your attentlon from those major project objectives.

Productivity measurement avoids a dependency on
measures such as lines-of-code that can have widely
diftering values depending on the technology used.
We track lines-of-code, but only as a secondary mea-
sure to compare projects using the same language.

The projects that were analyzed were 22 complete
DP Services application development projects. 16
were written in GOBOL, 4 were written using PL/1,
and 2 used DMS/VS.

(Although we still use an incidental amount of As-
sembler (ALC) coding for specialized function on
some of our projects, we no longer do entire projects
using ALC, because it is not productive enough.
Consequently, we have no ALC projects in our mea-
surements. For those who might have the data, the
method described should work well in measuring
relative functional productivity on ALC projects.)

Project completion dates ranged from mid 1974 to
early 1979. The projects ranged in size from 500 work-
hours to 105,000 work-hours.

Twenty-two projects may seem to be a small number,
considering that DP Services probably completed
about 1500 contracts during that time. But, these 22
were all of the projects that passed the selection
criteria in that time period.

These were the selection ground rules:

1. Only complete projects that had proceeded
through ail phases from requirements definition to
final system test and demonstration, and had de-
livered a product to our customer, would be analyzed.

2. The whole project had to be done under our proj-
ect management with consistent task definitions and
management procedures.

3. All work-hours spent by our people and the cus-
tomer’s people had to be known and accounted for
carefully.

4. The functional factors had to be known.

We found that about 3 to 7 projects meeting those
criteria are completed per year.

To measure productivity we had to define and mea-
sure a product and a cost. The product that was
analyzed was function value delivered. The number
of inputs, inquiries, outputs, and master files de-
livered were counted, weighted, summed, and ad-
justed for complexity for each project. The objective
was to develop a relative measure of function value
delivered 1o the user that was independent of the
particular technology or approach used.

The basis for this method was developed over the
last 5 years from the DP Services project estimating
experience. As part of that estimating we validated
each estimate with a series of weighted questions

about the application function and the development
environment. We found that the basic value of the
application function was consistently proporlioqa! to
a weighted count of the number of external user in-
puts, outputs, inquiries and master files.

The general approach is to count the number of ex-
ternal user inputs, inquiries, outputs, and master files
delivered by the development project. These factors
are the outward manifestations of any application.
They cover all the functions in an application.

These counts are weighted by numbers designed to
reflect the function value to the customer. The
weights used were determined by debate and trial.
These weights have given us good results:

o Number of Inputs X 4

- Number of Outputs X 5

« Number of Inquiries X 4

- Number of Master Files X 10

Then we adjust that result for the effect of other
factors.

If the inputs, outputs, or files are extra complicated,
we add 5% . Complex internal processing can add
another 5% . On-line functions and performance are
addressed in other questions. The maximum adjust-
ment possible is 50% , expressed as * 25% so that
the weighted summation is the average complexity.

This gives us a dimensionless number defined in
functlon points which we have found to be an effec-
tive relative measure of function value delivered to
our customer. These definitions are all shown in the
Function Value Worksheet {(Figure 3).

A recent article by Trevor Crossman in the May 1979
Datamation described a similar functional approach
to measuring programmer productivity. His approach
defined function based on program structure. Our
approach defines function based on external attri-
butes. He concentrated on programmer tasks of
design, code, and unit test. As you will see we looked
at the whole application development cycle from
system design through system test. Both our views on
the necessity of a functional approach appear to
agree.

| believe that DP Services approach, based on ex-
ternal attributes, will be more effective in determining
or proving the productivity advantages of other higher
level languages and deveiopment technologies.

The cost used was the work-hours contributed by
both 1BM and the customer people working on the
project, through all phases (design and implementa-
tion) (Figure 4). Thess are the elements of cost
covered in the anslysis. The percentage distributions
In the current model have been developed from DP
Services project experience over the last 3 or 4 years.
The intent Is to state the development cost in terms
of work-hours used to design, program, and test the
application project.

Figure 5 is our productivity time trend from 1974
through 1978. We have plotted hours worked per
function point delivered. This means thatdown is
good; down means that fewer hours were spent gen-
erating each function point. There are three types of
projects plotted here. Each red dot represents a
COBOL project, each blue dotrepresents a PL/1
praject, and each white dot represents a DMS/VS
project. The line is a linear least squares fit to all of
the points.

The productivity improvement shown between 1974
and 1978 is about 3 to 1. PL/1, DMS/VS, and COBOL
projects combine to show a significant trend toward
improving productivity. Because three languages are

~ represented, we believe we have a measurement that

can analyze the relative productivity of different lan-
guages and different technologies. The DMS/VS
projects, in particular, have continued the increasing
productivity trend even though we are still very early
on the Isarning curve with DMS.

Figure 6 shows the relationship between project size
and productivity. It is derived from the same projects.
1t shows that more waork hours are required to pro-
duce each function point as the projects get larger.
This effect has been known for a long time. This chart
simply quantifies the result for the 22 projects we
analyzed. It shows that project size must be con-
sidered in any productivity comparisons. Further-
more, the two curves show that for the whole range
of project sizes, on the average, PL/1 is probably
about 25% more productive than COBOL. The initial
indication on DMS/VS is that it is probably more pro-
ductive than either PL/1 or COBOL. If this trend is
confirmed, DMS/VS could prove to be about 30%
more productive than COBOL.

The promise of being able to analyze the relative
productivity of technigues as different as COBOL and
DMS/VS is the greatest potential of this functional
approach. It can provide the means to prave the effi-
ciency of higher level [anguages and approaches
such as DMS/VS and ADF.

Figure 7 uses the same data but removes the effect of
project size on our productivity trend line.

Remember that down still means that fewer hours
were spent to produce each function point. Down is
good. With the project size efiect removed, there is
still a significantly improving productivity trend from
1974 to 1978,

Figure 7 also allows us 1o divide our projects into
two groups: those below the zero line that exceeded
their productivity expectations, and those above the
line that did not achieve their productivity expecta-
tions. Then we can draw some conclusions.

Factors that were strongly associated with higher
than average productivity were:

= The project was completed afier 1976, the time
whaen the disciplined application development

R&

process, installed in 1974, was beginning to have
its effect across all our projects.

« The programming languages and tschnologies
PL/1, DMS/VS, and on-line development were
used.

+ The improved programming technologies—
structured coding, top-down implementation,
development library, and HIPO documentation—
were used.

Where approved these are now used on all our con-
tracts (naturaily such decisions as programming
janguage and the use of DMS/VS are still the pre-
rogative of our customers).

One last chart may give us some clues as 1o where
this productivity comes from. How many lines of de-
signed, written, and tested code must be produced to
deliver one point of function value? (Figure 8.) For
these projects, DMS/VS averaged 25 lines-of-code
per function point delivered, PL/1 averaged 65, and
COBOL averaged 110 lines-of-code per one point of
function value. You can see why DMS/VS and PL/1
are proving to be more productive than COBOL.

To sum up, measured functionally over the last S
years, DP Services application development produc-
tivity has increased about3 o 1. This is acom-

pounded productivity increase of about 25% per year.

We have used the function value measure to deter-
mine the relative productivity of different languages,
technologies, and project sizes. We intend to con-
tinue using this functional measure to select and pro-
mote technologies that can help us stay compstitive.

We found that these improved programming tech-
nologies definitely contribute to high productivity.
They are an important part of each of our contracts.

We found strong evidence that the disciplined appli-
cation development process significantly promotes
project success. Not only does it consistently yield
successiul projects by the measures of on-time,
within budget, and a satisfied customer, but itis
strongly associated with high productivity. In addi-
tion it provides the reliable project feedback that we
need to make meaningful analysis.

Project phasing, which is an important part of the
application development process, has helped define
our projects in smaller pieces. In turn these smaller
prajects have contributed to higher productivity.

Regarding the measurement of project productivity,
we found that we had to include the whole process,
including the design phase, in the productivity mea-
surement to draw meaningful conclusions.

We found that a disciplined process was an essential
ingredient to meaningful productivity measurement.
Discipline provide agreed-upon definitions of product
and cost consistent across projects being measured.

The function based measurement has proved to be
an effective way to compare productivity between
projects. Before it was established we could only
compare projects that were alike in language and
technology, or we had to face the difficult problem of
comparing estimates of hypothetical projects against
actual results. We intend to continue using and im-
proving the function value measurament.

implementation
Phase

o et s s b o o e o

!

o e et o e b s e

People
Resources
-
L goge STpett:s. installation
2 Internal a0e, ey and
Design and Integrate Maintenance
External
Design ?;:Iems
Requirements
Obijectives
Time —
Figure 1
Update
Development 82,2,“;{322
Procedures Project
& Guidelines
. Define .
: = roject — : B -
Need Obijectives Job Project Project
4 A
: 4 Track
ge\{lew Assess e~ Project =
roject < Project Progress
Objectives Risk
Document
Report
g Project =
Status
Conduct
< Project e
Reviews
Control
~7 Change [
Figure 2

{jonl
B
iiﬂnu

pP SERVICES Date:

FUNCTION VALUE INDEX WORKSHEET Project 1D:
Project Name:
Prepared by: Date: . Reviewed by: Date: .
Project Summary: Stact Date' End Date Work-Hours Function Points Delivered or Designed

. (Erom calculation].

Function Points Calculation {Delivered or Dasigned!:

e ———— e e — —— e — e = — = — —
F Allocation estimated by Project Manager [
Note: Definitions ; . Delivered ?elivered by Delivgred : Totals'
on back of form. Delivered by Moéxfylnq ‘nstalligg by Using i {Identify
5 by New Existing and Testing a Code Preponderant
: Code Code a Package Generator ; Language)
] 1
Language t {
Inputs i | X Q
Outputs ? X 5
Files H i X 10
Inguiries { i X 4
. Work-hours i { Total
Design . ! i Unadjusted
Implementation L 3 Function
e e e e o = e = v = o — — — pedi Points
Cemplexity Adjustment: (Estimate degree of influence for each factor}
___ On-line data entry is provided in
reliahle backun. recovery. and/or the applivatien,

system availability are provided
by the application design ox
implementation. The functions —_—
may be provided by specifically
designed application code or by
vse of functions provided by
standard software. For example,
+he standard IMS backup and
recovery functions.

on~line data entry is provided in
the application and in addition
the data entry is conversational
requiring that an input trans-—
action be built up over muitiple
operations.

Master flles are updated on-line.

Data communications are provided

in the application. Inputs, outputs, files, or

inguiries arxe complex in

pistributed processing functions this application.

are provided in the application.

Performance must be considered

in the design or implementation. Internal processing is complex

In addition to considering in this application.

performance there is the added
complexity of a heavily utilized
gperational configuration. Th=2
customer wants to run the

Degree of Influence on Function:

application on existing or 0 Yo
ne 3 Average
e b 1 ncidental & Signicicane
i ;
Gtilized. 2 Moderate 5 Essential

————
cm——

Total Degree of Influence (N)

Complexity adjustment equals (0.75 + oot (R}

Unadjuated Total X Complexity Adjustment = Function Points Delivered or Designed

X -

Figure 3

pefinitions:

General Instructions

Count all inputs, outputs, master files,
inquiries, and functions that arc made available
to the customer through the project‘s design,
programming, oC testing efforts. For example,
count the functions provided by an IUP, FDP, or
Program product if the package was modified,
integrated, tested, and thus provided to the
customer through the project's efforts.

Work-hours:

The work-hours recorded should be the IBM and
customer hours spent on the DP Services
standard tasks applicable to the project phase.
The customer hours should be adjusted to IBM
equivalent hours consgidering experience,
training, and work effectiveness. '

Input. Count:

Count each system input that provides business
function comsmunication from the users to the
computer system For example:

@ scanner forms or carxrds
e keyed transactions

@ data forms
@ terminal screens

Do not double count the inputs. For example,
consider a manual operation that takes data
from an input form, to form two input screens,
using a keyboard to form each screen before the
entry key is pressed. This should be counted
as two (2) inputs not five {35).

Count all unique inputs. An input transaction
should be counted as unique if it required
different processing logic than other inputs.
For example, transactions such ag add, delete,
or. change may have exactly the same screen
format but they should be counted as unique
ipputs if they require different processing
logic.

Do not count input or output terminal screens tha
are needed by the system only because of the
specific technical implementation of the
function. For example, DMS/VS screens, that

are provided only to get to the next screen

and do not provide a business function for the
user, should not be counted.

Do not count
sets. These

input and output tape and file data
are included in the count of files.

20 not count
covered in a

inquiry transactions. These are

subsequent guestion.

Qutput Count:

Count each system output that provides business
function communication from the computer system
to the users, For example:

¢ printed reports
® terminal screens

® terminal printed output
® operator messages

Count all uvnigque external ocutputs. A&n output is
considered to be unigue if it has a format

that differs from other external outputs aad
inputs, or, if it requires unigque processing
logic to provide or calculate the output data.

Do not include output terminal screens that
orovide only a simple error message or
acknowledgement of the entry transaction,
unless significant unique processing logic

is required in addition to the editing
associated with the input, which was counted.

Do not include on-line inquiry transaction
outputs where the response occurs immediately.
These are included in a later guestion.

File Count:

Count each unigue machine readable logical
file, or logical grouping of data from the
viewpoint of the user, that is generated,

used, or maintained by the system. For
example:
® input card files e tape files

® disk files

Count major user data groups within a data base.
Count logical files, not physical data sets.
For example, a customer file requiring a
separate index file because of the access
method would be counted as one 1logical

file not two. However, an alphabetical

index file to aid in establishing customer
identity would be counted.

Count all machine readable interfaces
to other system as files.

Inguiry Count:

count each input/response couplet where an on—
line input generates and directly causes an
immediate on-line output. Data is not entered
except for control purposes and therefore only
transaction logs are altered.

Count each uniguely formatted or uniquely
processed inquiry which results in a file search
for specific information er summaries to be
prescnted as response to that inguiry.

Do not alsc count inquiries as inputs or
ocutputs.,

Figure 3 (Continued}

Ra

Total Project

System Design Phase

@ Requirements Definition

(12.1%) System Design
(6.3%) External Design

internal Design

Integration Test
(i1.6%) System Test and Demonst:ation

User Documentation
Figure 4

Hours Worked

per

Function Paoint
Delivered

70 —

X PLNM
60 -

@ COBCL

A DMS/VS

1974 1975 1976 1977 1978 1979 1980
Project Completion Date
Figure §

Hours Worked

per
Function Point
Delivered
®
60
co8 ®
50 - o /
- /
.= o = =PL/1
40 - @® - - aadans
/ - o
@ / P 4 - -
~” @
30 - 3 x'x/' ~mmeme X PL/
_ e 9%
20 . 'l'x. A& DMS/VS
A
®
10 -
®
ol I | 1 1 I i | I i]
10K 20K 30K 40K 50K 60K 70K 80K 90K 100K 110K
Project Size — Hours Worked
Figure 6
100
L]
= x PL/A
Percentage 80 °
that 60 e COBOL
Actual Results ®
Exceeded a0k A DMS/VS
Expected Resuilts Worse Than
in 20 Expected
Hours Worked By Size
per 0
Function Point Better than
Delivered -20 Expected
By Size
40
®
or L ! 1 1 1]
1974 1975 1976 1877 1978 1979 1980

Figure 7

Project Completion Date

91

2000 DMS/VS ..' PL/1
) 25 LOC/FP & 65 LOC/FP
Function ..'
Points .: ® COBOL
Delivered ..’ ¥4 110 LOC/FP
o /
1500 ..'
o. 4
<
..
Fe /
@
.b
<
1000 ..’ /
K uununux PL/1
s e
/ e @ COBOL
- DMS/VS
300 h 5 /
|] l |]
50K 100K 150K 200K 250K 300K

Figure 8

Lines-of-Code Delivered

