
 

FATTO Software Consulting - www.fattocs.com 

This document contains material that has been extracted from the COSMIC Measurement Manual (4.0.1).  It is reproduced in this document with 
permission of COSMIC. 

 
 

Functional User Requirements (FUR): A 
sub-set of the user requirements. 
Requirements that describe what the 
software shall do, in terms of tasks and 
services. 
Non-Functional Requirement (NFR): Any 
requirement for the software part of a 
hardware/software system or software 
product, including how it should be 
developed and maintained, and how it 
should perform in operation, except a 
FUR for software.  
Functional Size: A size of the software 
derived by quantifying the FUR. 
User: Any person or thing that 
communicates or interacts with the 
software at any time. 

Functional Size Measurement (FSM): 
The process of measuring functional 
size. 
COSMIC unit of measurement: 1 CFP 
(Cosmic Function Point), which is the 
size of one data movement. 
Software Context Model: enable a 
Measurer to define the software to be 
measured and the size measurement.  
These ensure that the results can be 
understood and interpreted consistently 
by future users. 
Generic Software Model: define how 
the FUR of the software to be measured 
are modeled so that they can be 
measured. 
 

                 
 

Purpose of a measurement: A 
statement that defines why a 
measurement is required, and what the 
result will be used for. 
Scope of a measurement: The set of FUR 
to be included in a specific FSM exercise. 
Layer: A functional partition of a 
software system architecture. 
Peer pieces of software: Two pieces of 
software are peers of each other if they 
reside in the same layer. 
Level of decomposition: Any level 
resulting from dividing a piece of 
software into components then from 
dividing components into sub-
components, and so on. 
Functional user: A (type of) user that is a 
sender and/or an intended recipient of 
data in the FUR of a piece of software. 

Boundary: A conceptual interface 
between the software being measured 
and its functional users. 
Level of granularity: Any level of 
expansion of the description of a single 
piece of software such that at each 
increased level of expansion, the 
description of the functionality of the 
piece of software is at an increased and 
uniform level of detail. 
Persistent Storage: Storage which 
enables a functional process to store a 
data group beyond the life of the 
functional process and/or from which a 
functional process can retrieve a data 
group stored by another functional 
process, or stored by an earlier 
occurrence of the same functional 
process, or stored by some other 
process. 

 
 

Piece of Software: Any discrete item of 
software at any  level of decomposition  
from the level of a whole  software  
system  down  to  and  including  the  
level  of  the  smallest  component  of  a  
software system. 
Functional process: A set of data 
movements, representing an elementary 
part of the FUR for the software being 
measured, that is unique within these 
FUR and that can be defined 
independently of any other functional 
process in these FUR. 
Object of interest (OOI): Any ‘thing’ in 
the world of the functional user that is 
identified in the FUR, about which the 
software is required to process and/or 
store data. It may be any physical thing, 
as well as any conceptual object or part 
of a conceptual object. 
Data group: A distinct, non-empty and 
non-ordered set of data attributes 
where each included data attribute 
describes a complementary aspect of 
the same one object of interest. 
 

Data attribute: The smallest parcel of 
information, within an identified data 
group, carrying a meaning from the 
perspective of the software’s FUR. 
Base Functional Component (BFC):  An 
elementary unit of the FUR defined by 
an FSM method for measurement 
purposes. 
Data movement: A BFC which moves a 
single data group type. 
Data manipulation: Anything  that  
happens to data other than  movement  
of  the  data  into  or  out of a functional 
process, or between a functional process 
and persistent storage. 
Error/confirmation message: An Exit 
issued by a functional process to a 
human user that either confirms only 
that entered data has been accepted or 
only that there is an error in the data. 
Control  command: A command that  
enables  human  functional  users  to  
control  their  use  of  the software but 
which does not involve any movement 
of data about an  OOI of the FUR of the 
software being measured. 

 

  
 

Entry (E): A data movement that moves 
a data group from a functional user 
across the boundary into the functional 
process where it is required. 
Read (R): A data movement that moves 
a data group from persistent storage 
into the functional process which 
requires it. 

Exit (X): A data movement that moves a 
data group from a functional process 
across the boundary to the functional 
user that requires it. 
Write (W): A data movement that 
moves a data group lying inside a 
functional process to persistent storage. 

 
Size (functional processi) =  

 

 
Σ size(Entriesi) + Σ size(Exitsi) + 
Σ size(Readsi) + Σ size(Writesi) 

 
Size (Change(functional processi)) = 

 
Σ size (added data movementsi) + 
Σ size (modified data movementsi) + 
Σ size (deleted data movementsi) 

COSMIC measurement labeling: a 
measurement result shall be noted as ‘x 
CFP (v.y) ‘, where: ‘x’ represents the 
numerical value of the functional size, 
and  ‘v.y’  represents  the  id  of  the  
standard  version  of  the  method used 
to obtain the value ‘x’. 

Modification a data movement: At least 
one of the following applies: 
- the data group moved is modified 
(when one or more attributes are added, 
removed or modified, e.g. in meaning or 
format, but not in their values) 
- the associated data manipulation is 
modified. 

 

(*): This step is not a mandatory part 

of the COSMIC method. 

Measurement 
Strategy 

Mapping 
Phase 

Measurement 
Phase 

Input from measurement sponsor 
Software Context Model 

FUR 

Definition of each piece of 
software to be measured and 
of the required measurement 

FUR in the form of the Generic 
Software Model 

FUR 
Generic Software Model 

The COSMIC method measurement process 

Determine the SCOPE, 
LAYER and LEVEL OF 

DECOMPOSITION of the 
software to be measured 

Identify the 
FUNCTIONAL 

USERS 

Input from the 
MEASUREMENT 

SPONSOR 

Determine 
PURPOSE of the 
measurement 

Determine the LEVEL OF 
GRANULARITY of the FUR 

to be measured 

Record the 
MEASUREMENT 

STRATEGY 

ITERATE 

COSMIC MEASUREMENT STRATEGY PHASE 

PURPOSE, SCOPE, FUNCTIONAL 
USERS, LEVEL OF DECOMPOSITION 
& LEVEL OF GRANULARITY of the 
piece of software to be measured 

Functional User 
Requirements in the 

artefacts of the 
software to be 

measured  

IDENTIFY 
FUNCTIONAL
PROCESSES 

IDENTIFY 
DATA 

GROUPS *IDENTIFY 
DATA 

ATTRIBUTES 

IDENTIFY DATA 
MOVEMENTS  

FUR in the form of the 
COSMIC Generic Software 

Model 
COSMIC MAPPING PHASE 

FUR in the form of 
the COSMIC 

Generic Software 
Model 

APPLY THE 
COSMIC UNIT OF 
MEASUREMENT 

SIZING 
CHANGES 

LOCAL 
EXTENSIONS 

AGGREGATE 
MEASUREMENT 

RESULTS 

Functional Size of 
the measured 

software 

COSMIC MEASUREMENT PHASE 

recorded information 

Functional size of the 
software in 
units of CFP 



 

FATTO Software Consulting - www.fattocs.com 

This document contains material that has been extracted from the COSMIC Measurement Manual (4.0.1).  It is reproduced in this document with 
permission of COSMIC. 

 

PRINCIPLES – The COSMIC Software Context Model 

a) Software is bounded by hardware. 
b) Software is typically structured into layers. 
c) A layer may contain one or more separate ‘peer’ pieces of software. 
d) Any piece of software to be measured shall be defined by its measurement scope, 
which shall be confined wholly within a single layer. 
e) The scope of a piece of software to be measured shall depend on the purpose of the 
measurement. 
f) The functional users of a piece of software to be measured shall be identified from its 
FUR as the senders and/or intended recipients of data to/from the software respectively. 
g)  The FUR of software may be expressed at different levels of granularity.  
h) A precise COSMIC size measurement of a piece of software requires that its FUR are 
known at a level of granularity at which its functional processes and sub-processes may be 
identified. 
i) An approximate COSMIC size measurement of a piece of software is possible if its FUR 
are measured at a high level of granularity by an approximation approach and scaled to 
the level of granularity of the functional processes and sub-processes. 

 

DATA MOVEMENTS - RULES DESCRIPTION 

Entry (E)  
a) The data group of a triggering Entry may consist of only one data attribute which simply 
informs the software that ‘an event Y has occurred’. Very often, especially in business 
application software, the data group of the triggering Entry has several data attributes 
which inform the software that ‘an event Y has occurred and here is the data about that 
particular event’.  
b) Clock-ticks that are triggering events shall always be external to the software being 
measured. Therefore, for example, a clock-tick event occurring every 3 seconds shall be 
associated with an Entry moving a data group of one data attribute. Note that it makes no 
difference whether the triggering event is generated periodically by hardware or by 
another piece of software outside of the boundary of the software being measured.  
c) Unless a specific functional process is necessary, obtaining the time from the system’s 
clock shall not be considered to cause an Entry.  
d) If an occurrence of a specific event triggers the Entry of a data group comprising up to 
‘n’ data attributes of a particular OOI and the FUR allows that other occurrences of the 
same event can trigger an Entry of a data group which has values for attributes of only a 
sub-set of the ‘n’ attributes of the OOI, then one Entry shall be identified, comprising all ‘n’ 
data attributes.  
e) When identifying Entries in a screen that enables human functional users to input data 
into functional processes, analyze only screens that are filled with data. Ignore any screen 
that is formatted but otherwise ‘blank’ except for possible default values, and ignore all 
field and other headings that enable human users to understand the input data required.  

Exit (X)  
a) An enquiry which outputs fixed text, (where ‘fixed’ means the message contains no 
variable data values), e.g. the result of pressing a button for ‘Terms & Conditions’ on a 
shopping web-site, shall be modeled as having one Exit for the fixed text output.  
b) If an Exit of a functional process moves a data group comprising up to ‘n’ data attributes 
of a particular OOI and the FUR allows that the functional process may have an occurrence 
of an Exit that moves a data group which has values for attributes of only a sub-set of the 
‘n’ attributes of the OOI, then one Exit shall be identified, comprising all ‘n’ data attributes.  
c) When identifying Exits, ignore all field and other headings that enable human users to 
understand the output data. 

Read (R)  
a) Identify a Read when, according to the FUR, the software being measured must retrieve 
a data group from persistent storage.  
b) Do not identify a Read when the FUR of the software being measured specify any 
software or hardware functional user as the source of a data group, or as the means of 
retrieving a stored data group. (For this case see the principles and rules for Entries and 
Exits.) 

Write (W)  
a) Identify a Write when, according to the FUR, the software being measured must move a 
data group to persistent storage.  
b) Do not identify a Write when the FUR of the software being measured specify any 
software or hardware functional user as the destination of the data group, or as the means 
of storing the data group. (For this case see the principles and rules for Entries and Exits.) 

RULES – Functional Process 

a)  A functional process shall belong entirely to the measurement scope of one piece of 
software in one, and only one, layer. 
b)  Any  one  triggering  Entry  of  a  piece  of  software  being  measured  may  initiate  only 
one functional process in that software.  
c)  A  functional  process  shall  comprise  at  least  two  data  movements,  an  Entry  plus 
either an Exit or a Write. There is no upper limit to the number of data movements in a 
functional process. 
d)  An  executing  functional  process  shall  be  considered  terminated  when  it  has 
satisfied  its  FUR  for  the  response  to  its  triggering  Entry.  A  pause  during  the 
processing  for  technical  reasons  shall  not  be  considered  as  termination  of  the 
functional process. 

 

 

PRINCIPLES – The COSMIC Generic Software Model 

a) A piece of software interacts with its functional users across a boundary, and with 
persistent storage within this boundary. 
b) FUR of a piece of software to be measured can be mapped into unique functional 
processes. 
c) Each functional process consists of sub-processes. 
d) A sub-process may be either a data movement or a data manipulation. 
e) A data movement moves a single data group. 
f) There are four data movement types: Entry, Exit, Write and Read. 
g) A data group consists of a unique set of data attributes that describe a single OOI. 
h) Each functional process is started by its triggering Entry data movement. The data group 
moved by the triggering Entry is generated by a functional user in response to a triggering 
event. 
i) A functional process shall include at least one Entry data movement and either a Write or 
an Exit data movement, i.e. it shall include a minimum of two data movements. There is no 
upper limit to the number of data movements in a functional process. 
j) As an approximation for measurement purposes, data manipulation sub-processes are not 
separately measured; the functionality of any data manipulation is assumed to be accounted 
for by the data movement with which it is associated. 

 

RULES – Data movement uniqueness and possible exceptions 

a)  Unless  the  Functional  User  Requirements  are  as  given  in  rules  b)  or  c),  all  data 
describing any one OOI that is required to be entered into one functional process shall be 
identified as one data group moved by one Entry.  The same equivalent rule applies to any 
Read, Write or Exit data movement in any one functional process. 
NOTE:   A  functional  process  may,  of  course,  have  multiple  Entries,  each  moving data 
describing a different OOI. 
b)  A Functional User Requirement may specify different data groups to be entered into one 
functional process from functional users  that must be separately identified by that  
functional  process,  where  each  data  group  describes  the  same  object  of interest. One 
Entry shall be identified for each of these different data groups. The same equivalent rule 
applies for Exits of data to different functional users from any one functional process. 
NOTE: Any one functional process shall have only one triggering Entry.  
c)  A FUR may specify different data groups to be moved from persistent storage into one 
functional process, each describing the same OOI. One Read shall be identified for each of 
these different data groups. The same equivalent rule applies for Writes in any given 
functional process. 
d)  Repeated occurrences of any data movement type when it is being executed shall not be 
counted. Numbers of occurrences when software executes are irrelevant to FSM. This 
applies even if multiple occurrences of the data  movement type  differ in their execution  
because  different  values  of  the  data  attributes  of  the  data  group  moved result  in  
different  processing  paths  being  followed  through  the  functional  process type. 

 
 

PRINCIPLES – DATA MOVEMENTS 

Entry (E): a) An Entry shall move a single data group describing a single OOI from a functional 
user across the boundary and into the functional process of which the Entry forms part. If the 
input to a functional process comprises more than one data group, each describing a 
different OOI, identify one Entry for each unique data group in the input. 
b) It shall not exit data across the boundary, or read or write data from/to persistent storage.  

Exit (X): a) An Exit shall move a single data group describing a single OOI from the functional 
process of which the Exit forms part across the boundary to a functional user. If the output of 
a functional process comprises more than one data group, identify one Exit for each unique 
data group in the output. b) It shall not enter data across the boundary, or read or write data 
from/to persistent storage. 

Read (R): a) A Read shall move a single data group describing a single OOI from persistent 
storage to a functional process of which the Read forms part. If the functional process must 
retrieve more than one data group from persistent storage, identify one Read for each 
unique data group that is retrieved. b) It shall not receive or exit data across the boundary or 
write data to persistent storage. c) During a functional process, movement or manipulation 
of constants or variables which are internal to the functional process and that can be 
changed only by a programmer, or computation of intermediate results in a calculation, or of 
data stored by a functional process resulting only from the implementation, rather than from 
the FUR, shall not be considered as Read data movements. d) A Read data movement always 
includes any ‘request to Read’ functionality (so a separate data movement shall never be 
counted for any ‘request to Read’ functionality). 

Write (W): a) A Write shall move a single data group describing a single OOI from the 
functional process of which the Write forms part to persistent storage. If the functional 
process must move more than one data group to persistent storage, identify one Write for 
each unique data group that is moved to persistent storage. b) It shall not receive or exit 
data across the boundary, or read data from persistent storage. c) A requirement to delete a 
data group from persistent storage shall be measured as a single Write data movement. 
d) The following shall not be considered as Write data movements: 

 The movement or manipulation of any data that did not exist at the start of a functional 
process and that has not been made persistent when the functional process is complete;  

 Creation or update of variables or intermediate results that are internal to the functional 
process; 

 Storage of data by a functional process resulting only from the implementation, rather 
than from the FUR. (An example would be the storage of data temporarily during a large 
sort process in a batch-processed job.) 

 


